IBM Analog Hardware Acceleration Kit
latest

Get started

  • Installation
  • Advanced installation guide
  • Using the PyTorch integration
  • Glossary

Analog AI Concepts

  • Analog AI
  • Analog AI Hardware
  • Advantages and Challenges

Using the Simulator

  • Using aihwkit Simulator
  • Using Experiments

Analog DNN Training

  • Specialized Update Algorithms
  • Analog Training Presets

Analog DNN Inference

  • Inference and PCM Statistical Model
  • Analog Hardware-aware Training

Advanced Guides

  • aihwkit design
  • Development setup
  • Development conventions
  • Project roadmap
  • Changelog

References

  • API Reference
  • Paper References
IBM Analog Hardware Acceleration Kit
  • »
  • aihwkit.nn package
  • Edit on GitHub

aihwkit.nn package¶

Neural network modules.

Subpackages¶

  • aihwkit.nn.modules package
    • Subpackages
      • aihwkit.nn.modules.rnn package
        • Submodules
    • Submodules
      • aihwkit.nn.modules.base module
      • aihwkit.nn.modules.container module
      • aihwkit.nn.modules.conv module
      • aihwkit.nn.modules.conv_mapped module
      • aihwkit.nn.modules.linear module
      • aihwkit.nn.modules.linear_mapped module

Submodules¶

  • aihwkit.nn.conversion module
  • aihwkit.nn.functions module

© Copyright 2020, 2021, 2022 IBM Research. Revision d3f83cd8.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
stable
0.6.0
v0.5.1
v0.5.0
v0.4.0
v0.3.0
v0.2.1
v0.2.0
v0.1.0
Downloads
html
On Read the Docs
Project Home
Builds